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Are young children just random explorers who learn serendipitously? Or are even young chil-
dren guided by uncertainty-directed sampling, seeking to explore in a systematic fashion? We
study how children between the ages of 4 and 9 search in an explore-exploit task with spatially-
correlated rewards, where exhaustive exploration is infeasible and not all options can be expe-
rienced. By combining behavioral data with a computational model that decomposes search
into similarity-based generalization, uncertainty-directed exploration, and random exploration,
we map out developmental trajectories of generalization and exploration. The behavioral data
show strong developmental differences in children’s capability to exploit environmental struc-
ture, with performance and adaptiveness of sampling decisions increasing with age. Through
model-based analyses, we disentangle different forms of exploration, finding signatures of both
uncertainty-directed and random exploration. The amount of random exploration strongly de-
creases as children get older, supporting the notion of a developmental “cooling off” process
that modulates the randomness in sampling. However, even at the youngest age range, children
do not solely rely on random exploration. Even as random exploration begins to taper off,
children are actively seeking out options with high uncertainty in a goal-directed fashion, and
using inductive inferences to generalize their experience to novel options. Our findings provide
critical insights into the behavioral and computational principles underlying the developmental
trajectory of learning and exploration.
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Children are natural born explorers. While exploration
and active learning are quintessential features of develop-
ment and maturation, they also pose fundamental challenges
to children and adults alike. In particular, efficiently search-
ing for information and rewards requires balancing the dual
goals of exploring unknown options to learn something new,
and exploiting familiar options to obtain known rewards. At
a restaurant, should you go with your usual favorite or should
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you try the chef’s latest creation? As a child, should you play
your favorite game again or try out something new? Explor-
ing novel options can potentially reveal new and even better
rewards, but could also lead to disappointment. Known as the
explore-exploit dilemma, this fundamental problem contrasts
the goals of gaining knowledge to reduce uncertainty with
immediately acquiring rewards.

Optimal solutions to explore-exploit dilemmas are
unattainable in all but limiting cases (Bellman, 1952; Git-
tins & Jones, 1979), making heuristic strategies an active
area of research in many fields, including cognitive and de-
velopmental psychology. Whereas many studies have in-
vestigated how adults balance exploration and exploitation
(for reviews, see Cohen, McClure, & Angela, 2007; Hills
et al., 2015; Mehlhorn et al., 2015), less is known about
the developmental processes that shape learning and explo-
ration during childhood. Studying how children, who have
fewer cognitive resources and less experience, approach such
problems can provide critical insights into the computational
and behavioral principles that drive learning and develop-
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ment more generally. Here, we investigate developmental
trajectories in learning and exploration between the ages of
4 and 9, an age range where substantial changes in chil-
dren’s exploration behavior have been observed across differ-
ent tasks (Betsch, Lehmann, Lindow, Lang, & Schoemann,
2016; Ronfard, Zambrana, Hermansen, & Kelemen, 2018;
Ruggeri, Markant, Gureckis, Bretzke, & Xu, 2019; Ruggeri,
Xu, & Lombrozo, 2019). To map out developmental trajec-
tories we combine behavioral data from a spatial search task
with predictions from a computational model that disentan-
gles different forms of exploration. Consistent with previ-
ous theories (Gopnik et al., 2017), our results show that the
exploration patterns of young children are characterized by
high levels of random sampling, which decreases with age.
However, even at the youngest age range, children do not
rely solely on random exploration, but they actively seek out
options with high uncertainty (directed exploration) and use
inductive inferences to predict unobserved rewards (general-
ization).

How to explore: Random exploration, directed explo-
ration, and generalization

Research on explore-exploit problems typically contrasts
two distinct classes of exploration strategies (Gershman,
2018; Wilson, Geana, White, Ludvig, & Cohen, 2014). Ran-
dom exploration models exploration by adding noise to the
decision process (Luce, 1959; Thompson, 1933). Instead of
only making reward-maximizing decisions, this added ran-
domness can lead to the incidental exploration of new op-
tions and (better or worse) rewards. Related to this strategy,
it has been recently suggested that children’s exploration be-
havior is characterized by “higher temperature” (i.e., nois-
ier) sampling, which “cools off” with age (Gopnik et al.,
2017). The metaphor of temperature appeals to methods
such as simulated annealing (Kirkpatrick, Gelatt, & Vecchi,
1983), which is an optimisation algorithm that uses a time-
dependent reduction of randomness to avoid getting stuck in
a local optimum. On this view, young children exhibit high
amounts of random sampling, which results in exploration of
a larger set of possibilities compared to adults (Cauffman et
al., 2010; Mata, Wilke, & Czienskowski, 2013). As children
grow older, temperature decreases, yielding a stronger focus
on reward maximization, leading to less diverse sampling be-
havior (Bonawitz, Denison, Griffiths, & Gopnik, 2014).

Directed exploration (E. Schulz & Gershman, 2019; Wil-
son et al., 2014) is an alternative strategy, which relies on rep-
resenting one’s uncertainty about the world and then assign-
ing an intrinsic value towards actively reducing this uncer-
tainty (Gottlieb & Oudeyer, 2018). Instead of adding more
variability through random (noisy) sampling, directed explo-
ration actively seeks out uncertainty. According to this view,
obtaining information is rewarding in and of itself, and the
value of an option is inflated through an “uncertainty bonus”

(Auer, 2002). By valuing uncertainty positively, directed ex-
ploration encourages sampling options with promising but
uncertain rewards, rather than focusing merely on exploiting
known high-reward options. Computationally, directed ex-
ploration is more demanding, since it requires a richer repre-
sentational structure that encodes both expected rewards and
the underlying uncertainty. However, already infants have
been shown to value the exploration of uncertain options pos-
itively (L. E. Schulz, 2015), 6- and 7-year-olds can integrate
prior beliefs and obtained evidence in simple learning and
exploration tasks (Bonawitz, van Schijndel, Friel, & Schulz,
2012), and children age 7 to 11 have been shown to rely more
on directed exploration than adults when searching for re-
wards (E. Schulz, Wu, Ruggeri, & Meder, 2019).

In addition to random and directed exploration, the abil-
ity to generalize (Shepard, 1987) is another important cog-
nitive capacity for navigating the exploration-exploitation
dilemma. In particular, generalization provides traction for
exploring large problem spaces by making predictions about
novel options. For instance, when Italian immigrants came
to the US around 1900, they brought with them knowledge
and love of the classic Neapolitan pizza. In their search for
creating similarly rewarding dishes, they explored a variety
of novel, but similar options – giving the world Chicago-
, New York-, and California-style pizza, as well as several
other new variations. A child encountering a new toy can
predict whether or not it will be fun by comparing it to other
toys it has encountered. If it appears similar to other fun toys,
there is a good chance this new toy is also fun. Thus, gener-
alization provides critical guidance for which options to ex-
plore – namely those which are similar to known high-reward
options. On this view, developmental differences in explo-
ration are tightly connected to the ability to make inductive
inferences about unexplored options based on prior experi-
ence. As cognitive functions and memory develop, they en-
able more complex cognitive processes and representations
(Blanco et al., 2016), thereby supporting more effective gen-
eralization for guiding exploration. For instance, changes in
search behavior over the life span may be due to the accumu-
lation of knowledge, with adults having stronger inductive
biases than children, who seem to weigh new evidence more
strongly (Gopnik, Griffiths, & Lucas, 2015).

Goals and scope

While random and directed exploration are conceptually
different, they are not mutually exclusive. Research shows
that both types of exploration strategies contribute to search
and decision making in adolescent and adult participants
(Gershman, 2018; Somerville et al., 2017; Wilson et al.,
2014), with dissociable neural signatures underlying the two
forms of exploration (Zajkowski, Kossut, & Wilson, 2017).
In addition, both children and adults rely on generalization
to learn about the environment and make inferences from ex-
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perienced to not-yet-explored options (E. Schulz, Wu, Huys,
Krause, & Speekenbrink, 2018; E. Schulz et al., 2019; Wu,
Schulz, Speekenbrink, Nelson, & Meder, 2018).

The goal of the present paper is to investigate how young
children, age 4 to 9 years, balance random and directed ex-
ploration, using a spatial search task with correlated rewards.
In particular, we trace age-related differences in learning
and exploration using a computational model that combines
similarity-based generalization with both directed and ran-
dom exploration (Wu et al., 2018). Our data enable a di-
rect test of the “cooling off” hypothesis and offers empirical
evidence for the trajectory with which random sampling de-
creases over the course of childhood development.

Previous studies have shown reliable signatures of gener-
alization and directed exploration in adults, with relatively
little random exploration (Wu, Schulz, & Gershman, 2020;
Wu et al., 2018). In a comparison of children age 7 to
11 and adults, Schulz and colleagues (2019) found no age-
related differences in random exploration. Rather, children
differed from adults by having higher levels of directed ex-
ploration and narrower generalization. While the lack of dif-
ferences in random exploration does not support the idea of
a “cooling off” process over the lifespan, it could also be
the case that children age 7 to 11 had already transitioned
to a lower temperature and had already developed the capac-
ity for directed exploration. Therefore, our goal is to inves-
tigate a younger age range to search for the developmental
stage where random exploration diminishes and directed ex-
ploration emerges.

Experiment

We used a simplified version of the spatially-correlated
multi-armed bandit paradigm (Wu et al., 2018) to investigate
how children learn and search for rewards on a grid world
by clicking on different tiles (Fig. 1). Each tile had a dif-
ferent reward distribution, where the goal was to accumulate
as many rewards as possible within a limited search horizon
(i.e., a fixed number of clicks). Rather than displaying re-
wards numerically, as in previous experiments (E. Schulz et
al., 2019), here the value of rewards was indicated using dif-
ferent shades of red to be interpretable by children as young
as 4 (Fig. 1). In this task, rewards were spatially correlated,
such that nearby options had a similar mean reward. Thus,
participants could use generalization from a sparse number
of observations to guide their exploration towards promis-
ing regions of the search space. Importantly, the number of
available clicks (25) was much smaller than the number of
available options (64), requiring searchers to balance click-
ing novel tiles to discover new rewarding options (explo-
ration) with re-clicking tiles already known to provide high
rewards (exploitation).

Methods

Participants. We recruited 54 children in the age range
4 to 7 (M = 72.6 months S D = 7.6, range 51 − 82 months,
24 female), henceforth referred to as 6-year-olds, and 48 chil-
dren in the age range 8 and 9 (M = 93.1 months, S D = 6.5,
range 84 − 108 months, 23 female), henceforth referred to
as 8-year-olds. In addition to comparing these age groups,
we also conducted analyses that treat age as a continuous
variable. Fourteen additional children were excluded from
analysis because they failed the instruction check (n = 9),
did not want to play anymore (n = 1), were not native speak-
ers (n = 2), or because their parents intervened during the
experiment (n = 2). Informed consent was obtained from
children’s legal guardians prior to participation; average du-
ration was about 12 minutes.

Materials, design, and procedure. Children played six
rounds of a spatial search game on a tablet, in which they
were presented with an 8 × 8 grid world with spatially cor-
related rewards (Fig. 1). The expected reward across all en-
vironments was identical (i.e., average reward over all tiles
of a grid); what differed between environments was the spa-
tial correlation among rewards. The strength of the spatial
correlations was manipulated between subjects, with smooth
environments having stronger spatial correlations than rough
environments. On each round, a new environment was sam-
pled without replacement from a set of 40 environments gen-
erated for each class from a radial basis function kernel (see
below), with λsmooth = 4 and λrough = 1. The sampled en-
vironments defined a bivariate reward function on the grid,
with each reward including additional normally distributed
noise, such that there were slight variations in reward when
repeatedly clicking a tile.

At the beginning of each round, one random tile was re-
vealed and children could sequentially sample 25 tiles. On
each trial, they could either click a new tile or re-click a
tile they had already selected before (clicking was done by
touching the desired tile on the tablet). Clicking a tile for
the first time revealed its color, with darker colors indicat-
ing higher rewards along a continuous, linearly scaled color
range (Fig. 1). In each round, the underlying rewards were
scaled to a randomly drawn maximum value in the range of
70% to 90% of the darkest reward value. Re-clicked tiles
could show small variations in the observed color (i.e., under-
lying reward) due to normally distributed noise, ε ∼ N (0, 1).

Children were awarded up to five stars at the end of each
round (e.g., 4.6 out of 5; see Fig. 1b), based on the ratio
of their average reward to the global maximum of the given
grid. At the beginning of a round, the stars were empty, then
they continuously filled up in accordance with each obtained
reward. The instructed goal was to collect as many stars as
possible in each round; at the end of the game, children re-
ceived a number of stickers proportional to the average num-
ber of stars earned in each round.
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Stars collected

Stars collected

Stars collected
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How certain are you?
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light dark

Remaining tiles: 5
Bonus round!

Conti
nue
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Remaining tiles: 5
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Figure 1. Example environments and screenshots from experiment. a) Two rough environments with low spatial correlation and two smooth
environments with high spatial correlation. Darker shades of red correspond to higher rewards. b) Spatial search game, in which children
had 25 clicks in each round to obtain as many stars as possible by finding darker (i.e., more rewarding) tiles. c) Bonus round judgments, in
which children predicted the rewards for five previously unobserved tiles (tile with dashed border) and made a confidence judgment about
their prediction.

The first round was a tutorial round, in which children
were familiarized with the goal of the game, the spatial corre-
lation of rewards, the maximum number of clicks allowed per
round, and the possibility of re-clicking tiles (Appendix C).
After the tutorial round, children were required to answer
three comprehension questions. If they failed to answer any
of the questions correctly, the relevant part of the instructions
was repeated and the questions were asked again. If they
failed again, they continued with the experiment, but were
later excluded from the analyses.

The sixth and last round was a bonus round, in which chil-
dren sampled for 15 trials and then made reward predictions
for five randomly chosen and previously unobserved tiles
(Figure 1c). This was explained to them before the bonus
round started. Judgments were made using a continuous
slider, asking children to indicate the darkness of the target
tile, with the end points labeled as “light” and “dark”. When
moving the slider, the target tile changed its color accord-
ingly. The underlying reward scale was continuous, ranging
from 0 to 50. To assess the level of confidence associated
with the reward predictions, children were asked how certain
they were about the predicted darkness, using a slider from 0
to 10 in steps of 1, with the endpoints labeled as “not certain
at all” to “very certain”. After judging five tiles children were
asked to select one of them. They received the corresponding
reward and then continued the round until the search horizon
was exhausted.

Behavioral results

We first analyze the behavioral data in terms of perfor-
mance and exploration behavior. These analyses exclude the
tutorial and bonus rounds, leaving a total of 100 search deci-
sions (4 rounds × 25 trials) for each of the 102 participants.

We then report the results of the bonus round, where we ana-
lyze children’s reward predictions and confidence judgments.
The behavioral data are complemented by model-based anal-
yses, where we disentangle generalization, directed explo-
ration, and random exploration. We report both frequentist
statistics and Bayes factors (BF) to quantify the relative evi-
dence of the data in favor of the alternative hypothesis (HA)
over the null hypothesis (H0) (see Appendix A for details).

Performance: Obtained rewards

Whereas both smooth and rough environments had the
same expected rewards, the stronger spatial correlations in
the smooth environment facilitated better performance for
both age groups (6-year-olds: t(52) = 3.3, p = .002, d = 0.9,
BF = 22; 8-year-olds: t(46) = 6.4, p < .001, d = 1.8,
BF > 100; Fig. 2a). Thus, regardless of age, children were
able to leverage the spatial correlation of rewards in the en-
vironment, and performed better in more correlated environ-
ments.

Eight-year-old children obtained higher rewards than 6-
year-olds in both rough (t(48) = 2.6, p = .012, d = 0.7,
BF = 4.1) and smooth environments (t(50) = 3.3, p = .002,
d = 0.9, BF = 19). Age-related performance differences
were also found when treating age as continuous variable
(Fig. 2b), with performance increasing with age in both
rough (Pearson r = .36, 95% CI = [.09, .58], p = .011,
BF = 6.0) and smooth environments (r = .39, 95% CI
= [.14, .60], p = .004, BF = 14).

Figure 2c shows the learning curves (average reward over
trials; first aggregated within and then across participants).
Consistent with the overall performance, learning curves in-
creased more strongly in smooth compared to rough envi-
ronments. In rough environments, 8-year-olds performed
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Figure 2. Obtained rewards. a) Tukey box plots of the distribution of obtained mean rewards, separately for each age group and environment.
Each dot is a participant-wise mean, the horizontal line in the box shows the group median and the diamonds indicate group means. Dotted
line is random performance. b) Average obtained rewards as a function of age in smooth and rough environments. Each dot represents
one participant, the dashed line shows a linear regression (± 95% CI); dotted line is random performance. c) Learning curves showing the
average rewards over trials, first averaged within participants and then aggregated across participants; error bars are 95% CIs.

slightly better than 6-year-olds, but generally there was only
little improvement over trials. In smooth environments, older
children learned more quickly than younger children and
consistently outperformed them. A notable finding is that
in smooth environments, towards the end of the search, the
average obtained rewards tended to decrease again, in both
age groups, suggesting a tendency to continue exploration
even at the cost of foregone rewards.

Search trajectories

Rather than only comparing performance, we also looked
for behavioral patterns in how children searched for rewards,
by analyzing the distance between consecutive choices and
how this was affected by the magnitude of rewards and the
subsequent search decisions. Figure 3a shows the distribu-
tion of Manhattan distances between consecutive choices.
For 8-year-olds, the mean distance was smaller in smooth
than in rough environments (t(46) = −3.1, p = .003, d = 0.9,
BF = 13), indicating they searched more locally in the pres-
ence of strong spatial correlations. For 6-year-olds, there was
no difference between environments (t(52) = 1.0, p = .31,
d = 0.3, BF = .42), suggesting a more limited capability to
adapt to environmental structure.

We also analyzed search decisions (Fig. 3b) by comput-
ing the proportions of repeat choices, corresponding to re-
clicking the previously revealed tile, near choices, corre-
sponding to searching a neighboring tile (i.e., distance of 1),
and far choices, corresponding to clicking tiles with a dis-
tance larger than 1. Older children tended to search more
locally in smooth compared to rough environment, while
conversely making more far choices in rough compared to
smooth environments. This pattern was not observed for
6-year-olds, indicating that younger children did not adapt
their search patterns to the correlation structure of rewards

in the environment. Notably, the number of repeat clicks is
overall rather low, regardless of age group and environment
(see General Discussion). This may also explain the learn-
ing curves (Figure 2c), which tended to decrease towards the
end of each round in smooth environments. This demon-
strates that children generally show higher levels of explo-
ration when searching for rewards, and thus less exploitation
of high-value options that have already been observed.

Finally, we analysed the relation between the value of a
reward obtained at time t and the search distance on the sub-
sequent trial t + 1. If a large reward was obtained, searchers
should search more locally, while conversely, if a low re-
ward was obtained, searchers should be more likely to search
farther away. Using hierarchical Bayesian regression analy-
ses, we predicted search distance using the reward obtained
on the previous step, age group, and their interactions as
population-level (“fixed”) effects, while treating participants
as random intercepts. Figure 3c shows how the reward ob-
tained from the previous choice related to subsequent search
distance (see Table A1 in Appendix B for detailed results).
Both 6- and 8-year-olds tended to search more locally when
high rewards were obtained and searched further away when
low rewards were obtained. The two age groups were differ-
entially influenced by obtained rewards, such that the search
distance of 8-year-olds markedly decreased with the magni-
tude of reward, in both smooth and rough environments. In
comparison, 6-year-olds also tended to decrease search dis-
tance with higher rewards, but with a flatter slope. Taken
together, these findings indicate that the magnitude of re-
wards influenced search distance, but 8-year-olds were more
responsive in adapting their search behavior than 6-year-olds.
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Figure 3. Search trajectories. a) Histogram of distances between consecutive search choices. A distance of zero indicates a repeat click; a
distance of 1 corresponds to clicks on neighboring tiles; distances > 1 correspond to other clicks on the grid. The vertical dashed line marks
the difference between a repeat click and selecting any other tile. b) Average proportion of search decisions by age group and environment.
Repeat clicks correspond to re-clicking a previously revealed tile, near clicks correspond to directly neighboring tiles, and far clicks are
sampling decisions with a distance > 1. c) Search distance as function of reward obtained on the previous trial. The lines visualize the
relation between search distance and previous reward for each age group and environment, obtained from a Bayesian regression (± 95%
CI). The dots show the observed mean distances given previous rewards, aggregated across all decisions and children. One outlier has been
removed from the lower plot, but is included in all statistical analyses.

Bonus round judgments

The last round was a bonus round in which children made
15 search decisions and then predicted the expected rewards
for five random, unrevealed tiles. Additionally, they were
also asked how confident they were about the predicted re-
ward (i.e., darkness of tile).

Figure 4a shows the mean absolute error between chil-
dren’s estimates and the true underlying expected reward.
Overall, 8-year-olds had lower prediction error than 6-year-
olds (t(100) = 3.9, p < .001, d = 0.8, BF > 100). The dif-
ference between age groups was found in both environments,
albeit less pronounced in the rough (t(48) = 2.4, p = .019,
d = 0.7, BF = 2.9) compared to the smooth environment
(t(50) = 3.0, p = .004, d = 0.8, BF = 9.1). Aggregating both
age groups, we found no effect of environment on prediction
error (t(100) = −1.0, p = .32, d = 0.2, BF = .32). Com-
pared to a random baseline, 6-year-olds performed worse
than chance level (t(53) = 2.7, p = .009, d = 0.4, BF = 4.2)
whereas 8-year-olds were better than chance (t(47) = −3.1,
p = .003, d = 0.4, BF = 9.6). Looking at prediction error
as a function of age in months (Fig. 4), we found that in both
rough and smooth environments children’s prediction error
declined with age (rough: r = −.40, p = .004, BF = 14,
smooth: r = −.46, p < .001, BF = 57).

Across all judgments and children, we found no sys-
tematic relation between confidence and prediction error
(Kendall rank correlation: rτ = .07, p = .04, BF = .67).

A Bayesian regression with confidence, age group, and their
interaction as predictors and subject-wise random intercept
also showed no reliable relationship (see Table A2 in Ap-
pendix B).

In summary, 8-year-olds obtained higher rewards than
6-year-olds, with both groups performing better in smooth
compared to rough environments, facilitated by stronger spa-
tial correlations. Participants adapted their search patterns in
response to the magnitude of obtained rewards, searching lo-
cally upon finding rich rewards, and searching farther away
upon finding poor rewards. The responsiveness of this adap-
tive search pattern was mediated by age, where 8-year-olds
exhibited a stronger relationship between reward value and
search distance than 6-year-olds. Lastly, prediction accuracy
increased reliably with age, but there was no relation between
children’s subjective confidence in their reward judgments
and their prediction error.

A computational analysis of directed and random
exploration in children

The behavioral data presented above show strong and sys-
tematic differences between the exploration behavior of 6-
and 8-year-old children. We next present a computational
model that captures key aspects of generalization and sam-
pling strategies in order to map the developmental trajectory
of learning and exploration. In particular, the model provides
a clear computational framework for estimating to what ex-
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Figure 4. Bonus round judgments. a) Mean absolute prediction error for 6- and 8-year-olds. b) Mean absolute prediction error as function
of age. Each dot is one participant, the dashed line shows a linear regression (± 95% CI). Dotted line is random performance.

tent children generalize about the spatial correlation of re-
wards, and how their sampling behavior can be decomposed
into directed and undirected exploration.

The Gaussian Process Upper Confidence Bound (GP-
UCB) model

Our model consists of three building blocks: a learning
model that makes predictions about the distribution of re-
wards in the environment, a sampling strategy, which maps
these predictions onto valuation of options, and a choice
rule, which converts value into choice probabilities. We now
briefly describe these components, with further details pro-
vided in Supplement A.

Learning model. To model learning about rewards in
the environment we use Gaussian Process (GP) regression
as a form of Bayesian function learning (Rasmussen &
Williams, 2006). The GP uses the principles of Bayesian
inference to adaptively learn a value function, mapping the
location of each option onto rewards. Generalization about
novel options is thus accomplished through interpolation or
extrapolation from previous observations (rewards and their
locations). This approach has been shown to account for how
adults explicitly learn functions (Lucas, Griffiths, Williams,
& Kalish, 2015), and has been successfully applied to model
the behavior of children and adults in a wide range of learn-
ing and search tasks (E. Schulz, Konstantinidis, & Speeken-
brink, 2017; E. Schulz et al., 2019; Wu, Schulz, Garvert,
Meder, & Schuck, 2020; Wu, Schulz, & Gershman, 2020;
Wu et al., 2018).

Formally, a GP defines a distribution over functions f ∼
GP (m(x), k(x, x′)), where each function can be interpreted as
a candidate hypothesis about the relationship between spatial
location and expected rewards. The GP prior is determined
by a mean function m(x) and a kernel function k(x, x′). We
follow the convention of setting the mean function to zero,

while using the kernel function to encode the covariance
structure. Put simply, the kernel provides an inductive bias
about how points in the input space are related to each other
as a function of distance (i.e., spatial similarity). A common
choice for the kernel is the radial basis function (RBF):

k(x, x′) = exp
(
−
||x − x′||2

2λ2

)
, (1)

where x and x′ denote two inputs (e.g., coordinates of tiles on
the grid) and λ is the length-scale parameter governing the
extent of generalization. Put simply, the RBF kernel mod-
els generalization as an exponentially decaying function of
the distance between inputs x and x′. This kernel is closely
related to Shepard’s (1987) universal law of generalization,
which models generalization as an exponentially decaying
function of similarity, where similarity is the inverse of dis-
tance.

In the present task, GP regression generates normally dis-
tributed beliefs about the rewards for any tile x, summarized
as expectation µ(x) and uncertainty σ(x). These predictions
are modulated by the length-scale parameter λ, which defines
the extent to which rewards are assumed to be correlated as a
function of distance. For instance, λ = 1 corresponds to the
assumption that the rewards of two neighboring tiles are cor-
related by r = 0.6, and that due to the exponential decay this
correlation effectively decreases to zero for options further
than three tiles apart. We treat λ as a free parameter, which
we estimate for each individual participant. This enables us
to assess each child’s tendency to generalize.

Sampling strategies. Given a learner’s belief about ex-
pected reward µ(x) and estimated uncertainty σ(x), we use a
sampling strategy to map these beliefs onto a valuation for
each option. Specifically, we use Upper Confidence Bound
(UCB) sampling (Auer, 2002) to model directed exploration
as a simple weighted sum:
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UCB(x) = µ(x) + βσ(x) (2)

where µ is the mean expected reward and β represents the ex-
tent to which uncertainty σ (measured in terms of the stan-
dard deviation of x) is valued positively. The parameter β
is an “uncertainty bonus”, since it optimistically inflates ex-
pected rewards by their degree of uncertainty. UCB provides
an effective sampling strategy for balancing the exploration-
exploitation dilemma, by mediating between exploring novel
options to reduce uncertainty while also prioritizing the ex-
ploitation of high-value options.

To illustrate this sampling strategy, consider two options
(tiles) x1 and x2. Option x1 has expected reward of µ(x1) =

50 and uncertainty σ(x1) = 5. Option x2 has expected re-
ward of µ(x2) = 45 and uncertainty σ(x2) = 15. Thus, op-
tion x1 has higher expected reward than x2, but x2 is more
uncertain. UCB sampling takes into account both reward
and uncertainty to balance the explore-exploit trade-off. For
instance, if β = 1, UCB(x1|β = 1) = 50 + 5 = 55 and
UCB(x2|β = 1) = 45 + 15 = 60, meaning that option x2 is
more attractive than option x1. By contrast, if β = 0.2, then
UCB(x1|β = 0.2) = 50 + 1 = 51 and UCB(x2|β = 0.2) =

45 + 3 = 48. In this case, option x1 is valued higher than x2,
making it more likely to click this tile. Thus, the higher β,
the stronger a searcher values uncertainty positively, nudg-
ing them towards sampling uncertain options. Conversely,
when β → 0 the value of an option is dominated by its ex-
pected reward, regardless of the attached uncertainty. In our
model, we estimate β for each learner based on their indi-
vidual search behavior, to assess their level of uncertainty-
directed exploration.

Choice rule. The final component of the model is the
choice rule, which translates UCB values into choice proba-
bilities with a softmax function:

p(x) =
exp(UCB(x)/τ)∑N

j=1 exp(UCB(x j)/τ)
. (3)

Importantly, the softmax choice contains a temperature pa-
rameter τ that governs the amount of randomness in the
choice probabilities. This enables us to quantify the amount
of undirected (random) sampling for each learner. Higher
temperature sampling corresponds to noisier predictions,
where as τ→ ∞, all options have an equal probability of be-
ing chosen. Conversely, lower temperatures produce choice
probabilities that are more concentrated on high-value op-
tions, where as τ → 0, it becomes an argmax choice rule
(i.e., always choosing the option with the highest value). In
our model, τ is estimated from the data, to assess the amount
of random sampling for each child.

Model summary. In sum, the GP-UCB model com-
bines i) a learning component that generalizes from lim-
ited observations to unobserved options, ii) a UCB sampling
strategy that inflates expectations of reward by the associ-
ated uncertainties to perform directed exploration, and iii)
a softmax choice rule that converts UCB values into choice
probabilities and adds decision noise as a form of random ex-
ploration. Each model component has a single free parame-
ter that we estimate through cross-validation from children’s
search decisions: the length-scale parameter λ indicates the
extent of generalization, the uncertainty bonus β defines the
level of directed exploration, and the temperature parameter
τ captures the amount of random exploration Careful analy-
ses of these parameters provides a window into the computa-
tional principles of learning and exploration, enabling us to
identify age-related changes.

Model comparison

We contrast the predictive accuracy of the GP-UCB
model with a Bayesian reinforcement learning model (Mean
Tracker; MT). This model uses the same UCB and softmax
components, but differs in that it does not generalize. In-
stead, it learns independent reward distributions about each
option using the principles of associative learning (see Sup-
plement A and B for details and extended model results in-
cluding additional sampling strategies).

We used cross validation to assess how well the mod-
els predict each searcher’s sampling decisions, where—as
before—we omit the tutorial round and bonus round. Specif-
ically, we iteratively split each child’s data into a train-
ing set consisting of three of the four rounds, and hold-
ing out the remaining round as a test set. We computed
the maximum-likelihood estimates for each model’s param-
eters (range [exp(−5), exp(4)]) using differential evolution
(Mullen, Ardia, Gil, Windover, & Cline, 2011) and then eval-
uated each model’s predictive accuracy on the held-out test
set. This procedure was repeated for each participant for all
rounds.

We can describe the objective performance of our mod-
els using predictive accuracy as a pseudo-R2, comparing the
summed out-of-sample log loss for each model k against a
random model (i.e., choosing all options with with equal
probability):

R2 = 1 −
logL(Mk)

logL(Mrand)
, (4)

where logL represents log loss. Intuitively, R2 = 0 indicates
chance-level predictions and R2 = 1 indicates theoretically
perfect predictions.

Figure 5a shows the predictive accuracy of the two models
for both age groups. The GP-UCB model had higher predic-
tive accuracy than the MT-UCB model overall (t(101) = 6.6,
p < .001, d = 0.7, BF > 100), and also for each age group
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(6-year-olds: t(53) = 3.4, p = .001, d = 0.5, BF = 22;
8-year-olds: t(47) = 6.1, p < .001, d = 1.0, BF > 100).
In total, 73 out of 102 participants were best described by
the GP-UCB model: 34 out of 54 6-year-olds (63%) and 39
out of 48 8-year-olds (81%). These results demonstrate the
importance of generalization, since this component was not
present in the MT learning model.

Developmental differences in parameter estimates

To map the developmental trajectories of learning and
search, we analyzed the parameter estimates of the GP-UCB
model (Fig. 5b). There was no difference in the level of gen-
eralization (λ parameter) between 6- and 8-year-olds (Mann-
Whitney-U test: U = 1093, p = .18, rτ = −.11, BF = .42).
However, younger children had higher estimates for both
the exploration bonus β (U = 1602, p = .041, rτ = .17,
BF = 1.6) and temperature τ (U = 1688, p = .009, rτ = .21,
BF = 2.2), with a stronger age-related decrease for the latter.
These results indicate that 6-year-olds exhibited a stronger
tendency towards both directed and random exploration than
8-year-olds.

Figures 5c to f provide a more detailed analysis of these
findings by treating age as a continuous variable. First, Fig-
ure 5a shows that the predictive accuracy of the GP-UCB
model increased with age (Kendall’s rτ = .27, p < .001,
BF > 100). Second, consistent with the group-based anal-
yses, there were little changes in the generalization param-
eter λ as a function of age (rτ = .10, p = .14, BF = .39).
In contrast, both the uncertainty bonus parameter β and in
particular the temperature parameter τ of the softmax func-
tion decreased with age. Younger children tended to have
higher values of β (rτ = −.14, p = .043, BF = 1.0), indicat-
ing a somewhat larger value placed on reducing uncertainty,
and thus more directed exploration. Whereas the age-related
change in directed exploration were rather weak, there was a
marked decrease in the temperature parameter τ (rτ = −.23,
p < .001, BF = 46). Thus, the amount of random sampling
strongly decreased with age. These same changes in param-
eters as a function of age also hold when controlling for the
predictive accuracy of the GP-UCB model (see Fig. A2 and
Table A3 in Appendix B), although these analyses find a
slightly stronger increase in λ as a function of age, indicating
broader generalizations as children grow older.

Taken together, these analyses provide a window into the
developmental trajectories of exploration behavior, showing
how both directed and, in particular, random exploration de-
crease as children get older.

General Discussion

We investigated how 6- and 8-year-old children search for
rewards in a spatial version of the explore-exploit dilemma,
focusing on disentangling how generalization, random ex-
ploration, and directed exploration contribute to age-related

changes. Although general performance increased with age,
we found that even younger children could successfully gen-
eralize the observed spatial correlations and use this knowl-
edge to guide their search for rewards. Children adapted
their exploration behavior depending on the rewards they ob-
tained, with 8-year-olds showing a stronger relationship be-
tween obtained rewards and search distance. Finally, while
prediction accuracy in the bonus round increased with age,
there was no relation between children’s confidence and their
prediction error.

The model-based analyses showed that the GP-UCB
model provided a better account of children’s behavior
than the MT-UCB model, highlighting the importance of
similarity-based generalization. A key finding is a strong
age-related decrease of random exploration, represented by
the τ parameter of the softmax choice rule, consistent with
the hypothesis that children’s temperature “cools off” as they
get older (Gopnik et al., 2017). However, children’s explo-
ration behavior was not solely driven by random exploration,
but also by a high amount of uncertainty-directed sampling,
as indicated by high levels of the uncertainty-bonus param-
eter β. The valuation of uncertainty also tended to decrease
with age, but this trend was much weaker compared to the
tapering off of random exploration.

Our findings extend the developmental investigation of
children’s exploration behavior, complementing previous re-
search with older children (E. Schulz et al., 2019), as well
as adolescent and adult participants, who also show signa-
tures of both types of exploration strategies (Wilson et al.,
2014; Wu et al., 2018). Table 1 provides an overview of chil-
dren and adults’ model parameters across different studies
using similar versions of the multi-armed spatially-correlated
bandit paradigm. The comparison shows that children up
to around age 11 show higher levels of directed exploration
than adult subjects, whereas adults tend to generalize more
strongly. High levels of random exploration were only ob-
served in 6-year-olds, indicating that this form of exploration
diminishes earlier in development than uncertainty-guided
exploration. Future studies should systematically investigate
an even broader age range (e.g., from childhood through ado-
lescence to adulthood, ideally in a longitudinal design) to
identify changes in exploration and generalization over the
lifespan.

Children are keen explorers – but are they good ex-
ploiters? One peculiar finding we obtained was the low num-
ber of exploitation decisions (i.e., repeat clicks; Figure 3b).
Across all children and rounds (excluding tutorial and bonus
round), the proportion of repeat clicks was about 7% (6-
year-olds: 6.8%, 8-year-olds: 7.5%). While this proportion
was comparable to participants in a similar age range as re-
ported in other studies (e.g., E. Schulz et al., 2019, reported
5.6% repeat clicks for 7-8-year-olds and 6.4% for 9-11-year-
olds), this contrasts with the behavior of adults, who typically
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Figure 5. Model comparison and parameter estimates of the GP-UCB model. a) Predictive accuracy (pseudo-R2) of mean tracker (MT)
and Gaussian process (GP) learning model combined with upper-confidence-bound (UCB) sampling. Each dot represents one participant
with the mean out-of-sample accuracy across rounds (excluding practice and bonus round). Box shows IQR, the line is the median and
the diamond is the mean. b) Individual parameter estimates of the GP-UCB model by age group. c) Predictive accuracy of the GP-UCB
model as function of age. d-f) Parameter estimates of the GP-UCB model as function of age. Each dot represents one child with their
cross-validated median parameter estimates. Dashed line indicates a linear regression (±95% CI).

show a higher proportions of repeat clicks; 12% in Wu et al.
(2018, averaged across three experiments) and 32.1% in the
study by Schulz and colleagues (2019). Lower exploitation
rates for children have also been observed in simpler bandit
tasks with fewer options and independent reward distribu-
tions (Blanco & Sloutsky, 2019).

The tendency to over-explore might be responsible for the
decrease of children’s average rewards towards the end of
the search horizon (Figure 2c). Indeed, given a fixed search
horizon, it is typically better at some point to start exploit-
ing the found high-reward options, rather than keeping on
searching for even better options. It is likely that this be-
havior was driven by the high amount of both random and
directed exploration, as captured by a high temperature pa-
rameter τ, leading to increased random sampling, and a high
exploration bonus β, leading children to optimistically inflate
expected rewards of unobserved tiles. While this tendency to
over-explore impaired performance in our task, it may never-
theless be adaptive in some settings (Sumner et al., 2019), by
allowing children to discover changes that are not obvious
and are overlooked by adults (Gopnik et al., 2015; Lucas,
Bridgers, Griffiths, & Gopnik, 2014). It could be especially
adaptive in dynamic environments where reward structures
change over time (Behrens, Woolrich, Walton, & Rushworth,

2007; Speekenbrink & Konstantinidis, 2015). In such non-
stationary environments, previously rewarding options may
no longer be valuable at a later point in time, thereby bene-
fiting continuous exploration.

An important question for future research concerns the
representation of uncertainty in learning and exploration. In
our task, the spatial correlation of rewards favors a more
complex representation of uncertainty structured around gen-
eralization, but in other tasks simpler representations of un-
certainty may provide a better account. For instance, count-
based exploration strategies operate on simpler representa-
tions of uncertainty solely based on the number of experi-
ences with a certain stimulus (e.g., the number of times a
tile has been visited; Bellemare et al., 2016; Cogliati Dezza,
Cleeremans, & Alexander, 2019). This representation of un-
certainty can be used to implement a variant of the GP-UCB
model, where the posterior uncertainty σ(x) is replaced with
a count-based representation of uncertainty (Supplement A).
Exploratory analyses with a GP count-based model with
our data suggest promising results (Supplement B), yet also
present a crucial limitation. Specifically, the uncertainty esti-
mates of the count-based model are decoupled from the gen-
eralization component, producing identical uncertainty esti-
mates for all unobserved options. This holds for both near
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Table 1
Comparison of Predictive Accuracy and GP-UCB Parameter Estimates Across Different Studies with Children and Adults, Using the
Spatially-Correlated Multi-Armed Bandit Paradigm.

Age group Accuracy R2 Generalization λ Uncertainty bonus β Randomness τ
Current study

6-year-olds (N=54) 0.09 0.41 0.57 0.18
8-year-olds (N=48) 0.18 0.42 0.54 0.04

Schulz et al. (2019)
7-8 years (N=55) 0.17 0.44 0.51 0.01
9-11 years (N=55) 0.26 0.53 0.50 0.02
Adults (N=50) 0.39 0.83 0.24 0.03

Wu et al. (2018)
Adults (N=241) 0.26 0.74 0.40 0.03
Note: R2 is the mean predictive accuracy of the GP-UCB model. Model parameters λ, β, and τ are the median values of the
cross-validated estimates. We report the mean across three experiments from Wu et al. (2018), which used both 1D (Exp. 1)
and 2D spatially correlated bandits (Exp. 2-3), with similar smooth and rough environments (Exp. 1-2) or natural environments
defined by agricultural data (Exp. 3).

and distant options, disregarding the level of spatial proxim-
ity to previous observations. This is also the case for time-
based representations, where uncertainty is assumed to in-
crease the longer an option has not been chosen (Blanco &
Sloutsky, 2019). In this sense, the count-based account is
similar to the MT model, where both the estimates of reward
and uncertainty are updated only when a tile is observed.
When using a count-based representation of uncertainty, re-
ward estimates are influenced by generalization, but not the
uncertainty of rewards which is solely a function of previous
visits. By contrast, the GP-UCB model generalizes both re-
ward expectations and attached uncertainty by exploiting the
correlation structure of rewards in the environment. In fact,
research with adults has shown that confidence judgments are
systematically related to the uncertainty estimates predicted
by the GP (Wu, Schulz, Garvert, et al., 2020; Wu, Schulz, &
Gershman, 2020), as opposed to being uniform across all un-
observed options. (We observed a similar relation for 8-year-
olds in our study, but the data were rather noisy, so a cau-
tious interpretation is warranted; see Appendix B). Future
research should contrast different representations of uncer-
tainty in their ability to predict children’s and adults’ confi-
dence judgments about expected rewards of novel options, to
gain a better understanding of possible developmental trends
in the representation of uncertainty across the lifespan.

Conclusions

To conclude, our study provides important new insights
into the developmental origins and trajectory of learning and
exploration, revealing some of its underlying computational
principles. Being able to disentangle the role of generaliza-

tion, and directed versus random exploration enriches our un-
derstanding of how children learn about the world they live in
(Buchsbaum, Gopnik, Griffiths, & Shafto, 2011; Gopnik, So-
bel, Schulz, & Glymour, 2001) and the people they interact
with (Bridgers, Jara-Ettinger, & Gweon, 2019; Jara-Ettinger,
Gweon, Schulz, & Tenenbaum, 2016). It is also important to
extend this computational approach to investigate the explo-
ration behavior of even younger preschoolers, toddlers and
infants, to identify a more comprehensive developmental tra-
jectory and potentially account for individual differences. Fi-
nally, connecting this line of work with the growing body of
research and theories on curiosity (Berlyne, 1966; Gottlieb,
Oudeyer, Lopes, & Baranes, 2013; Kidd & Hayden, 2015)
promises to bring us one step closer to identifying the key to
children’s impressively successful early learning.
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Appendix A
Statistical analyses

We report both frequentist statistics and Bayes factors (BF) to quantify the relative evidence of the data in favor of the
alternative hypothesis (HA) over the null hypothesis (H0). All model specifications and R-code are available online at
https://osf.io/eq2bk/?view_only=fed4735fa15a4f3d8dd56db385b845b1.

Group comparisons

Frequentist tests are reported as t-tests for parametric comparisons, and Mann-Whitney-U or Wilcoxon signed-rank test
for non-parametric comparisons. Bayes factors are based on the default two-sided Bayesian t-test for either independent or
dependent samples, using a Jeffreys-Zellner-Siow prior with its scale set to

√
2/2 (Rouder, Speckman, Sun, Morey, & Iverson,

2009). All statistical tests are non-directional as defined by a symmetric prior. Bayes factors for the Mann-Whitney-U test
are based on performing posterior inference over the test statistic (Kendall’s rτ), assigning a prior using parametric yoking
(van Doorn, Ly, Marsman, & Wagenmakers, 2020).Bayes factors for non-parametric comparisons are based on performing
posterior inference over the test statistics (Kendall’s rτ for the Mann-Whitney-U test and standardized effect size r = Z

√
N

for
the Wilcoxon signed-rank test), assigning a prior using parametric yoking (van Doorn et al., 2020). The posterior distribution
for Kendall’s rτ or the standardized effect size r yields a Bayes factor via the Savage-Dickey density ratio test, where the null
hypothesis posits that parameters do not differ between groups and the alternative hypothesis posits an effect and assigns an
effect size using a Cauchy distribution with the scale parameter set to 1/

√
2.

Correlations

Linear correlations are tested with Pearson’s r, the corresponding Bayesian test is based on Jeffrey’s test for linear cor-
relation assuming a shifted, scaled beta prior distribution B( 1

k ,
1
k ) for r, where the scale parameter is set to k = 1

3 (Ly, Verhagen,
& Wagenmakers, 2016). For testing rank correlations with Kendall’s tau, the Bayesian test is based on parametric yoking
to define a prior over the test statistic (van Doorn, Ly, Marsman, & Wagenmakers, 2018). Bayesian inference is performed
to compute a posterior distribution for rτ, and the Savage-Dickey density ratio test is used to produce an interpretable Bayes
Factor.

Bayesian multilevel regressions

Regression analyses were performed in a Bayesian framework with Stan (Carpenter et al., 2017), accessed via R-
package brms (Bürkner, 2017). In all models, participants were treated as a random intercept, the remaining predictors were
implemented as population-level (“fixed”) effects. For population-level effects, we used a normal prior with a mean of 0 and
standard deviation of 10; for group-level (“random”) effects, we used a half student-t prior with 3 degrees of freedom, a mean
of 0, and a scale parameter of 10; for the intercept a student-t prior with 3 degrees of freedom, a mean of 1, and a scale
parameter of 10. All models were estimated over four chains of 4000 iterations, with a burn-in period of 1000 samples.
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Appendix B
Bayesian regression analyses

Search distance as function of reward on previous step

We ran separate regression analyses for each environment to assess the influence of reward obtained at trial t on search
distance at t+1, with population-level (“fixed”) effects for previous reward, age group, and their interaction, and by-participant
random intercepts. Figure 3c illustrates the population-level effects; Table A1 provides a summary of the results. For both
environments, these analyses showed an effect of previously obtained reward on search distance (i.e., lower rewards lead to
higher subsequent search distances), an effect of age group (i.e., 8-year-olds showed higher search distances overall), and an
interaction (i.e., the search distance of 8-year-olds was stronger influenced by obtained rewards than that of 6-year-olds).

Table A1
Bayesian Regression Results: Search Distance as Function of Reward on Previous Step.

Rough environment Smooth environment

Predictor Estimate 95% HDI Estimate [95% HDI]

Intercept 2.26 [1.90 – 2.63] 2.89 [2.6. – 3.19]
Previous reward -0.01 [-0.02 – -0.01] -0.03 [-0.03 – -0.02]
Age group 1.85 [1.31 – 2.34] 1.19 [0.73 – 1.64]
Previous reward × age group -0.04 [-0.05 – -0.03] -0.03 [-0.04. – -0.02]
Random Effects
σ2 0.48 0.29
τ00 4.84 4.14
N 50 52

Observations 5000 5200
Bayesian R2 0.16 0.13

Note: Both models were implemented in brms (Bürkner, 2017). We report the posterior mean estimates for the coefficients,
followed by an 95% uncertainty interval in brackets (”highest density interval“, HDI). σ2 indicates the individual-level vari-
ance and τ00 indicates the variation between individual intercepts and the average intercept. For categorical variable age group,
6-year-olds are the reference level.
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Bonus round judgments

In the bonus round, children made reward predictions for five previously unseen tiles and rated their confidence in their
predictions. To assess the relation between prediction error (mean absolute deviation between judged and true reward value)
and confidence we ran a Bayesian linear regression with prediction error as dependent variable, and confidence, age group and
their interaction as population-level (“fixed”) effects, and a random intercept for participants. Children’s confidence judgments
were elicited using an 11-point (0–10) slider with the endpoints labeled as “not at all” and “very sure”.

Table A2 provides a summary of the results; Figure A1 show the population-level (fixed) effects of the model, exclud-
ing the group-level effects (random intercepts over participants). These data show no systematic relation between children’s
subjective confidence in their predictions, and the magnitude of their prediction error.

Table A2
Bayesian Regression Results: Prediction Error and Confidence

Predictor Estimate 95% HDI

Intercept 13.72 [10.04 – 17.51]
Confidence 0.35 [-0.09 – 0.77]
Age group -2.12 [-7.57 – 3.29]
Confidence × age group -0.38 [-1.07 – 0.30]
Random effects
σ2 25.09
τ00 81.36
N 102
Observations 510
Bayesian R2 0.3

Note. The model was implemented in brms (Bürkner, 2017). We report the posterior mean estimates for the coefficients, fol-
lowed by an 95% uncertainty interval in brackets (”highest density interval“, HDI). σ2 indicates the individual-level variance
and τ00 indicates the variation between individual intercepts and the average intercept. For variable age group, 6-year-olds are
the reference level.

Figure A1. Confidence and prediction error in the bonus round. The lines visualize the expected values of the posterior predictive distribution
of a Bayesian regression (± 95% CI); the dots show the raw data.
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Regression analyses for age-related trends in parameter estimates

To control for the effect of predictive accuracy R2 on the age-related changes in the GP-UCB parameter estimates,
we ran regression analyses for each parameter with age (in months), individual R2, and their interaction as predictors for
the individual median parameter estimates. Since λ, β, and τ are defined as non-negative, we log-transformed them for the
regressions; for plotting the influence of age on parameters we converted the regression models’ predictions back to the original
scale by exponentiating them, such that all parameters are non-negative. Table A3 shows the results of the regression analyses;
Figure A2 visualizes the effects of age on the GP-UCB parameter estimates while taking into account R2.

Table A3
Bayesian Regression Results: Parameter Estimates with Age and R2 as Predictors.

Generalization λ (log) Uncertainty bonus β (log) Temperature τ (log)

Predictor Estimate 95% HDI Estimate 95% HDI Estimate 95% HDI

Intercept -2.83 [-4.55 – -1.12] 2.98 [-0.77 – 6.70] 3.76 [0.21 – 7.56]
Age (in months) 0.03 [0.01 – 0.05] -0.03 [-0.08 – 0.02] -0.05 [-0.10 – -0.01]
R2 5.49 [-3.05 – 13.95] -7.75 [-22.98 – 7.55] -5.94 [-20.91 – 8.96]
R2 × Age (in months) -0.08 [-0.18 – 0.03] 0.04 [-0.14 – 0.22] -0.06 [-0.24 – 0.13]

Observations 102 102 102
Bayesian R2 0.08 0.13 0.69
Note: All models were implemented in brms (Bürkner, 2017). We report the posterior mean estimates for the coefficients,
followed by an 95% uncertainty interval in brackets (”highest density interval“, HDI).

Figure A2. Effect of age on GP-UCB parameters, derived from a Bayesian regression with age (in months), individual model R2, and their
interactions, as predictor for the (log-transformed) median parameter estimates. For plotting we converted the regression models’ predictions
back to the original scale by exponentiating the parameter estimates, such that all parameters are non-negative.
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GP model predictions and bonus round judgments of reward and confidence

We assessed the relation between GP model predictions and participant judgments about expected reward and confi-
dence in the bonus round. In the bonus round, participants selected 15 tiles and then made reward predictions for five unseen
tiles and judged their confidence in their predictions. The MT model, which learns independent reward distributions, makes
identical predictions for all unseen tiles, as it does not generalize. By contrast, the GP model makes specific predictions for
novel options, taking into account the data obtained so far and the spatial correlation of the search ecology.

For each participant, we used parameters estimated estimated from rounds 2 to 5 in order to generate individual GP
model predictions (estimated mean reward and variance) for the five randomly selected tiles in the bonus round. These
predictions were conditioned on the 15 individual choices and observations made by each child and were generated using each
individuals’ median λ estimates. This represents a type of out-of-task prediction, where we used parameters estimated from
search decisions to prediction out-of-sample judgments. We use the mean reward predictions of the GP model (posterior µ(x)
of tile) as a prediction for each each child’s judgment about expected reward and the GP’s uncertainty estimates (posterior σ)
as a prediction of each child’s confidence judgments, where we treat uncertainty as the inverse of confidence.

GP predictions were somewhat correlated with participant predictions (rτ = .08, p = .013, BF = 1.5), although this
disappeared when separating participants into age groups (6-year-olds: rτ = .06, p = .182, BF = .22; 8-year-olds: rτ = .08,
p = .054, BF = .57). GP uncertainty estimates were negatively correlated with confidence for 8-year-olds (r = −.18, p = .005,
BF = 7.5), but not for 6-year-olds (r = .06, p = .330, BF = .23). This suggests that the confidence judgments of 8-year-olds
were somewhat accounted for by the GP model, but not those of 6-year-olds.

To analyze these findings in more detail, we conducted Bayesian regression analyses to predict children’s reward and
confidence judgments based on the outputs of the GP model. Specifically, we used GP model predictions, age group, and their
interaction as population-level (“fixed”) effects, and by-participant random intercept (Table A4). In the first model (Reward
judgments), participant reward judgments in the range [0,50] for novel options x (tiles) were predicted from the GP posterior
means of rewards, µ(x) . The second model (Confidence judgments) used the GP posterior uncertainty, σ(x) to predict chil-
dren’s confidence judgments in the range [0,10]. All GP predictions were computed based on individual participant λ-values
and the 15 search decisions they made prior to providing their judgments for five random novel options.

Figure A3. GP model predictions for bonus round judgments. The lines visualize the means of the posterior predictive distribution of
the Bayesian regression (± 95%CI); the dots show the raw data points. a) Relation between GP model predictions of reward and chil-
dren’s reward judgments. b) Relation between GP model uncertainty about expected rewards and children’s confidence about their reward
judgments.

Table A2 provides a summary of the results; Figure A3 visualizes the population-level (fixed) effects of the model,
excluding the group-level effects (random intercepts over participants). The results show a positive but rather weak rela-
tion between the GP model’s reward predictions and children’s reward judgments about unobserved tiles (Figure A3a). The
trends for the relation between model uncertainty and children’s confidence judgments mirror the overall correlations. For
6-year-olds, there’s a weak relation in the wrong direction (i.e., they tend to be more confident when the GP model is more
uncertain). By contrast, for 8-year-olds there is a fairly strong trend in that children’s confidence declined with increasing
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model uncertainty. However, the raw data are very noisy and unevenly distributed, so a cautious interpretation of these results
is warranted.

Table A4
Bayesian Regression Results: GP Model Predictions and Bonus Round Judgments.

Reward judgments Confidence judgments

Predictor Estimate 95% HDI Estimate 95% HDI

Intercept 24.08 [12.43 – 35.46] 6.59 [4.23 – 8.99]

GP predictions 0.29 [-0.15 – 0.75] 1.14 [-1.32 – 3.55]

Age group -2.09 [-16.13 – 12.33] 2.08 [-1.19 – 5.42]

GP predictions × age group -0.07 [-0.65 – 0.51] -3.3 [-6.73 – 0.03]

Random effects

σ2 32.69 3.49

τ00 168.25 4.53

N 102 102

Observations 510 510

Bayesian R2 .19 .49

Note: Both models were implemented in brms (Bürkner, 2017). We report the posterior mean estimates for the coefficients,
followed by an 95% uncertainty interval in brackets (”highest density interval“, HDI). σ2 indicates the individual-level vari-
ance and τ00 indicates the variation between individual intercepts and the average intercept. For categorical variable age group,
6-year-olds are the reference level.
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Appendix C
Instructions

The experiment was implemented on a tablet, where children could touch the screen to reveal new tiles. Below are screenshots
from the instructions; further screenshots are shown in Fig. 1b) and c).
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Supplement A
Computational models

We here provide a formal description of the learning models (Gaussian process regression and Bayesian mean tracker) and
sampling strategies we used to model children’s exploration behavior. In addition to the UCB sampling strategy we explored
three additional sampling functions, namely Count-based sampling, Mean Greedy Exploitation, and Variance Greedy Explo-
ration. Supplement B provides a full comparison of all all 2(learning model)×4(sampling strategies)=8 models.

Gaussian process regression

Gaussian Process (GP) regression is a Bayesian approach to generalization, which we use as a model of learning in
our spatially-correlated multi-armed bandit task. Let f : X → Rn denote a function that maps values from the input space X
(e.g., x- and y-coordinates of a tile) to real-valued scalar outputs (e.g., reward values). In our current task, we are mapping
locations on the grid to reward values. A GP defines a distribution over functions, where each function f can be understood as
a candidate hypothesis about the structure of rewards environment, and is modeled as a random draw from a GP:

f ∼ GP
(
m(x), k(x, x′)

)
, (S1)

The GP prior is defined by a mean function specifying the expected output given input x:

m(x) = E[ f (x)], (S2)

and kernel function specifying the covariance between any two inputs x and x′:

k(x, x′) = E
[
( f (x) − m(x))( f (x′) − m(x′))

]
(S3)

In the present study, reward values were visualized using different shades of red, corresponding to the underlying
numerical reward values. We scaled rewards to the range [0, 50] and set the prior mean to the median value of unscaled
payoffs m(x) = 25. The kernel function k(x, x′) is used to encode an inductive bias about the expected spatial correlations
between rewards (see Radial Basis Function kernel below).

To make predictions about expected rewards, we condition on the observed data Dt = {x j, y j}
t
j=1, where we assume

observations of reward y j ∼ N( f (x j), σ2
ε ) have Gaussian noise σ2

ε = 1. The posterior predictive distribution for any new input
x∗ is also a Gaussian distribution, with mean and variance given by:

E[ f (x∗)|Dt] = k>∗ (K + σ2
ε I)−1yt (S4)

V[ f (x∗)|Dt] = k(x∗, x∗) − k>?(K + σ2
ε I)−1k∗, (S5)

where k∗ = [k(x1, x∗), . . . , k(xt, x∗)] is the covariance between each observed input and the new input x∗, K is the t × t covari-
ance matrix evaluated at each pair of observed inputs, and y = [y1, . . . , yt]>. For simplicity, the main text uses the notation
µ(x∗) = E[ f (x∗)|Dt] and σ(x∗) =

√
V[ f (x∗)|Dt], based on the standard convention for describing the mean and standard

deviation of a normal distribution.
Radial Basis Function kernel. The Radial Basis Function (RBF) kernel specifies the correlation between inputs x

and x′ as

k(x, x′) = exp
(
−
||x − x′||2

2λ2

)
. (S6)

where x and x′ denote two inputs (e.g., coordinates of tiles on the grid) and λ is the length-scale parameter governing the rate
of correlation decay. The RBF kernel models generalization as an exponentially decaying function of the distance between
inputs, such that larger λ-values correspond to slower decays, stronger spatial correlations, and smoother functions. As λ→ ∞,
the RBF kernel assumes functions approaching linearity; as λ → 0, there ceases to be any spatial correlation, meaning that
learning of options’ rewards happens independently (similar to the assumption of the Mean Tracker model; see below for
details). In the model comparisons, we treat λ as a free parameter estimated through cross-validation to make inferences about
the extent to which children generalize.
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Bayesian mean tracker

The key difference between the GP model and the Mean Tracker (MT) is that the MT model learns independent reward
distributions for the options. We implement the MT model as a Bayesian updating model, which learns the rewards of each
option by computing an independent posterior distribution for the mean µ j of each option j. As in the GP account, the MT
model assumes that rewards are normally distributed (as is the case in our experiment), with a known variance but unknown
mean. The prior distribution of the mean is a normal distribution, implying that the posterior distribution for each option’s
mean is also a normal distribution:

p(µ j,t |Dt−1) = N(m j,t, v j,t) (S7)

where m j,t and v j,t denotes the posterior mean and variance, respectively. The mean and variance of an option j are only
updated when it has been selected at trial t:

m j,t = m j,t−1 + δ j,tG j,t

[
yt − m j,t−1

]
(S8)

v j,t =
[
1 − δ j,tG j,t

]
v j,t−1 (S9)

where δ j,t = 1 if option j is chosen on trial t, and 0 otherwise. In addition, yt is the observed reward at trial t, and G j,t is defined
as:

G j,t =
v j,t−1

v j,t−1 + θ2
ε

(S10)

where θ2
ε is the error variance, which we estimate as a free parameter.
Intuitively, the estimated mean of the chosen option m j,t is updated based on the difference between the observed value

yt and the prior expected mean m j,t−1 (i.e., prediction error), scaled by the Kalman gain k j,t. Thus, the Kalman gain acts as a
learning rate that is dynamically defined based on the ratio of the estimated uncertainty (v j,t−1) and the assumed uncertainty
(θ2
ε ) in the environment. This form of prediction error learning is shared with a broad range of models from associated

learning, where specifically, the MT can be understood as a Bayesian variant of the traditional Rescorla-Wagner (1972) model
(Gershman, 2015). As with the GP, we set the prior mean of the MT to the median value of unscaled payoffs m j,0 = 25, while
also setting the prior variance to √v j,0 = 250.

Sampling strategies

For each option, the GP and MT learning models generate normally distributed posteriors of the expected rewards
and associated uncertainty. The posterior predictions of the MT in the form of mean m j,t and standard deviation √v j,t have
the same structure as the GP posterior, which is defined by mean µ(x) and standard deviation σ(x). However, the MT uses
index j to denote each option, while the GP uses a vector notation x = {x1, x2} to denote the coordinates of each option. For
simplicity, we will refer to these predictions using mean µ(x) and standard deviation σ(x). We then use various sampling
strategies to map these estimates onto valuations for each option, which combined with a softmax choice rule (Eq. 3) provide
probabilistic predictions about where each participant would search next. We considered two sampling strategies that take
into account both estimated rewards and their uncertainty to balance the exploration-exploitation trade-off, Upper Confidence
Bound sampling and count-based sampling. We additionally tested the performance of two strategies that consider either only
rewards or uncertainty, i.e., constitute a pure exploitation strategy (mean greedy exploitation) or a pure exploration strategy
(variance greedy exploration).

Upper Confidence Bound sampling. Given the posterior predictive mean µ(x) and its standard deviation σ(x), the
upper confidence bound is given by a weighted sum

UCB(x) = µ(x) + βσ(x), (S11)

where the “exploration bonus” β determines how much a searcher values the reduction of uncertainty, relative to exploiting
known high-value options. We estimate β as a free parameter representing children’s tendency towards directed exploration.
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Count-based sampling. Similarly to the UCB sampling strategy, count-based sampling also considers both rewards
and uncertainty. However, uncertainty is represented in a computationally simpler way, namely solely by the number of
experiences with an option (Bellemare et al., 2016):

CB(x) = µ(x) + β
1

F(x) + 1
, (S12)

where F(x) are the number of previous visits to a specific option. This count-based exploration model is similar to UCB, but
depends on a simpler representation of uncertainty. Whereas the GP representation of uncertainty may vary across different
unobserved options as a function of distance to observed options, the count-based model treats all unobserved (i.e., not visited)
options as having the same uncertainty. Thus, this can be understood as a heuristic implementation of the full GP-UCB model,
but where representations of uncertainty are not influenced by the same similarity-based generalization mechanism as used to
make predictions about rewards.

Mean Greedy Exploitation. Whereas UCB and count-based sampling integrate both estimates of reward and uncer-
tainty, mean greedy exploitation values options solely based on expected rewards:

M(x) = µ(x), (S13)

This sampling strategy disregards any uncertainty and only samples options with high expected rewards, i.e. greedily exploits
the environment. This strategy is the special case of UCB and count-based sampling with β = 0.

Variance Greedy Exploration. Another special case of UCB sampling (with β → ∞) is to greedily explore options
solely according to their uncertainty (i.e., their predictive standard deviation):

V(x) = σ(x). (S14)

This sampling strategy only cares about reducing uncertainty, without taken into account the expected rewards of options.
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Supplement B
Full model comparison results

We evaluated all 2(learning model)×4(samplings strategies)=8 models in terms of their predictive accuracy R2 (Eq. 4). Ta-
ble S1 shows the full model comparison results in terms of models’ predictive accuracy (mean R2), and participant median
parameter values, estimated through leave-one-out cross-validation.

Table S1
Full model comparison results.

Age group Model R2 λ β τ θ2
ε

6-year-olds GP-UCB 0.0883 0.406 0.567 0.181 —
(N=54) GP-Counts 0.0847 1.44 3.49 0.170 —

GP-GM 0.0375 1.37 — 0.241. —
GP-GV 0.0274 0.166 — 0.510 —
MT-UCB 0.0321 — 15.2 0.868 4.44
MT-Counts 0.0324 — 22.4 7.02 27.5
MT-GM 0.0084 — — 54.6 54.6
MT-GV 0.0267 — — 0.0565 13.4

8-year-olds GP-UCB 0.175 0.419 0.540 0.0396 —
(N=48) GP-Counts 0.188 0.801 5.10 0.0819 —

GP-GM 0.0656 1.46 — 0.213 —
GP-GV 0.0306 0.156 — 0.420 —
MT-UCB 0.0481 — 16.9 0.342 4.66
MT-Counts 0.0517 — 15.8 4.69 12.2
MT-GM 0.0205 — — 54.6 54.6
MT-GV 0.0305 — — 0.0364 14.9

Note: Learning models: GP = Gaussian Process regression, MT = Bayesian Mean Tracker. Sampling strategies: UCB =

Upper Confidence Bound, GM = greedy mean, GV = greedy variance, Counts = count-based. Parameters: R2 = predictive
accuracy, λ = length-scale of RBF kernel (generalization parameter), β = uncertainty bonus, τ = random exploration, θ2

ε =

error variance.


